Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance
نویسندگان
چکیده
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement in application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability-pretreatment and enzymatic hydrolysis of biomass. Specifically, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently.
منابع مشابه
Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance
Background Biomass recalcitrance to enzymatic hydrolysis has been assigned to several structural and chemical factors. However, their relative importance remains challenging to evaluate. Three representative biomass species (wheat straw, poplar and miscanthus) were submitted to four standard pretreatments (dilute acid, hot water, ionic liquid and sodium chlorite) in order to generate a set of c...
متن کاملAssessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments
The production of cellulosic ethanol from biomass is considered a promising alternative to reliance on diminishing supplies of fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The conversion of lignocellulosic biomass to biofuels through a biological route usually suffers from the intrinsic recalcitrance of biomass owing to the complicat...
متن کاملOvercoming Biomass Recalcitrance by Combining Genetically Modified Switchgrass and Cellulose Solvent-Based Lignocellulose Pretreatment
Decreasing lignin content of plant biomass by genetic engineering is believed to mitigate biomass recalcitrance and improve saccharification efficiency of plant biomass. In this study, we compared two different pretreatment methods (i.e., dilute acid and cellulose solvent) on transgenic plant biomass samples having different lignin contents and investigated biomass saccharification efficiency. ...
متن کاملRecalcitrance of Wood to Biochemical Conversion - Feedstock Properties, Pretreatment, Saccharification, and Fermentability
Lignocellulose is an inexpensive and abundant renewable resource that can be used to produce advanced biofuels, green chemicals, and other bio-based products. Pretreatment and efficient enzymatic saccharification are essential features of bioconversion of lignocellulosic biomass. The aims of the research were to achieve a better understanding of the recalcitrance of woody biomass to bioconversi...
متن کاملDesigner lignins: harnessing the plasticity of lignification.
Lignin is a complex polyphenolic constituent of plant secondary cell walls. Inspired largely by the recalcitrance of lignin to biomass processing, plant engineering efforts have routinely sought to alter lignin quantity, composition, and structure by exploiting the inherent plasticity of lignin biosynthesis. More recently, researchers are attempting to strategically design plants for increased ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016